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RELECTION OF X-RAYS FROM REPEATED MULTILAYER STRUCTURES

I. Introduction.

Shortly after x-rays were discovered nearly 100 years ago, it was observed that crystals were able to reflect
x-rays, but only in certain directions. The accepted explanation for this phenomenon - called x-ray diffraction -
postulates that the crystal consists of simple but infinitely repeated identical 'cells' of atoms; for a given wavelength
and an arbitrary direction, reflections from the many cells interfere with each other; it is only along a few directions
that the reflections from the many repeated cells cooperate (reinforce) to provide a detectable *diffracted" beam.
The intensity along each diffracted beam depends va the exact position of each atom in the cell. Two uses,
conceptually each other's opposite, result from these facts: on the one hand, crystals can be used to produce desired
reflections of x-rays; on the other, observed reflections can be used to determine the detailed atomic structure of
the cell. An early, but authoritative, description of these effects appears in ref. [I].

It will be plausible that the phenomenological description and theory summarized above will be appropriate
only if the size of the cells and the wavelength of the radiation are of roughly the same size: on the one hand, very
short wavelengths 'will not notice" the correlation between atoms in a cell, while, on the other, very long ones
won't even notice the periodicity. So, if you are interested in reflecting long wavelengths, you might not find
natural crystals of large enough cell size; you might have to construct your own. This is the rationale of the
attempts, in the last few decades, of constructing repeating "multilayers" as artificial crystals [2]. These are,
generally speaking, a thin film of substance A of precisely known thickness (usually, a few atomic layers), followed
by a similar layer of substance B; followed by more identical bilayers, ABABABAB....

The diffraction properties of repeating multilayers, usually repeating bilayers, have been studied at the
Naval Research Laboratory (NRL) both experimentally and theoretically. For the theoretical work, two approaches
have been used:
1) an x-ray, or atomistic approach, and
2) an electromagnetic, or homogeneous approach.

In 1), a long and thin unit cell is first defined, as shown:

a a a a a b b b b b b b ----- > X

Both a and b atoms are in "ordered", specified positions. This long and thin cell is repeated an infinite number of
times in the space directions x,y, and z to form a semi-infinite slab. The reflective properties of the multilayer is
then calculated by evaluating the structure factor and other procedures well known to workers in x-ray
crystallography; see ref [1]. Corrections are later made for the finiteness of the multilayers, the vibrational motion
of the atoms, and the absorptive properties of the layers. The fact that atoms in thin layers are probably in random
rather than "ordered" positions is taken as unimportant for long enough wavelengths. For details of this atomistic
approach, refer to refs. [3] and [4].

The electromagnetic approach, 2), is the one described in the rest of this report. Each layer is assumed
to be homogeneous (non-atomic), the incident radiation is taken to be an electromagnetic wave, and their interaction
described by Maxwell's equations. It is thus a purely "classical" (i.e., a non-quantum) theory, containing neither
atoms nor photons. At each interface, the electromagnetic wave is split into a refracted and a reflected part given
by Fresnel's laws ( ref. [4] ) (which, of course, are derivable from Maxwell's equations); within the interior of any
layer, the wave is attenuated by absorption. We can thus calculate, successively, the properties of the
electromagnetic wave after any number of bilayers - until we reach the thickness of the specific multilayer we want
to describe, or until absorption has reduced the intensity to a value so low that is no longer interesting.

Manuscript approved December 16, 1991.



There is no new physics in this method of calculating the effect of multilayers on electromagnetic radiation
(see refs. [5], [61, [7] ). Rather, what is done here is the development of a formalism and a computer program
conveniently applicable to a problem of continuing interest at the Naval Research Laboratory [3].

Do the two methods agree? If not, which (if either) is correct, and under what circumstances? We have
only partial answers to these very reasonable questions. As noted above, our method 2) is more likely to be valid
the longer the wavelength of the radiation; for short waves (*hard x-rays*), atomic interactions cannot be ignored
or averaged over and a version of method 1) must be used. On the other hand, method 2) takes more reasonable
account of several physical properties: unlike method 1), it does not have to assume strict periodicity on the atomic
level; the fact of absorption enters the calculation properly ab initio, rather than as a correction to an absorption-
free calculation;and the same is true for the fact that the number of bilayers in the structure under consideration
is finite rather than infinite. In addition, method 2) is able to compute the reflectivity at any wavelength and in
particular the shape of any reflection line, while method 1) gives only the integrated reflectivity.

2. Soft X-ray Reflection via Classical Optics

a) a single layer

As sketched in figure 1, consider an electromagnetic wave going from region I down into regions Z and
region I (mnemonic for future use: f stands for "last'). Born and Wolf ( ref [5]; referred to as BW) show that
the electromagnetic field at point h2 is related to that at point 0 by the relation

U(h 2 ) - M2 . U(O) (1)

where U(h) is defined as the Ix2 matrix

U(h). (E(h) (2)u t) H(h)

with E and H the electric and magnetic fields, respectively,
and M2 is the 2x2 matrix

[ cos0 2  - (i/p 2)sin#2  (3a)

M' -('P2)S'n0 2  COS(32 J

with

P 2 - (02/12) cos0 2  (3b)

02 - (2rh2 1 )n2 cosO2
sin02 - (n11n2) 01

Please note that 0 is defined as the angle of incidence as measured with respect to the normal to the material surface,

as shown in figure 1 and as is customary in literature on optics. ( In the field of x-rays, 0 usually denotes the
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complement of this angle). The subscript 2 in the various quantities indicates that they refer to material '2". The
parameters E, t, n and are the dielectric constant, the magnetic permeability, and the index of refraction; they are

related by eu,- n,.

We can now use equ. (1) to calculate the field quantities E and H below the layer in terms of their values
above it. We think that the reader will find it reasonable that the reflectivity of the layer of material '2" which
is h2 centimeters thick can indeed be calculated from these field quantities. The details - a little lengthy but
straightforward - are given by BW in their equs. (48) and (51) of sec. 6.1. The polarization of the incident beam
also enters into the calculation.

b) Bilayers and repeated bilayers.

The virtue of the matrix formulation (1) is that the effect of any sequence of layers can now be written
down effortlessly: suppose that the layer of material '2" is followed by a layer, h3 cm thick, of material '3", as
shown in figure 2 : then we have

U(h2 +h) - M 3 . M 2  U(O) (4)

where M3 is just M2 with subscripts 2 replaced by 3; and for a sequence of N bilayers of materials 2 and 3 we have
simply

Q[ N(h2+h) ] - (M3.M,)N. U(O) (5a)

as illustrated in figure 3. To find the reflectivity of these N bilayers, we proceed just as in section 3a) above,
except that, in solving (5) instead of (1), we must use the more complicated ( but still 2 by 2) product matrix
(M3.M2)N instead of M2.

For convenience, rewrite (5a) as

U(bottom) - MZ• U(top) (5b)

where

-M3 . l2  (6)

is found by direct multiplication, and is written down by BW (their p.67, equ. (86)) and also in our appendix 1.
It can be written in the form

a~ c~ ~ (7)
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Next, we need, for equ.(5), the Nth power of this matrix. We do this by diagonalizing M1; that is, we find the
matrix S which produces

(where we have for simplicity droped the subscripts 23),and also find the "eigenvalues" X, and X2. The eigenvalues
of the Nth power of this matrix, needed in (5), come out simply to be XN and X2N, as is seen from

S M'S - S' MMM ... MMS
- S' M (SS -') M (SS-') ... M (SS-') MS
- (S'MS) (S-'MS) ... (S'MS)
- (S-IMS)N

which with the use of equ. (8) becomes

S -  M, S X- , - , 0

(9)

or

M N . $-' $

This explains why the number N of multilayers appears in appendix 1 in such a simple way - as an exponent on X,
and X2. All we shall need are the explicit values of X1, \2, and S. These come out of the diagonalization process
and are given in appendix 2.

We now proceed just as in the last paragraph of section 2a): put (9) into (5b) to get the field quantities
E and H below the multiple bilayer from their values above, and calculate the reflectivity from them.

This completes the essentials of the calculation; the details appear in the appendices. Appendix 1 covers
the mathematical aspects of this section. Appendix 2 details the diagonalizing transformation of a 2x2 matrix.
Appendix 3 shows how the existence of reflection peaks is related to the analytical properties of the eigenvalues of
the characteristic matrix. Appendix 4 gives two explicit expressions for the reflectivity r (which was derived in
appendix 1), and notes the conditions under which either is preferable for computations. Appendix 5 relates the
data for each atomic constituent of a layer to the gross properties (i.e. the index of refraction) of the layer.
Appendix 6 reconciles a ,..,ational difference between two references. Appendix 7 is a printout of the computer
program that is described verbally in section 5.

3. Integrated reflectivity.

The preceding section, together with the details in the appendices, has allowed us to compute the reflectivity
of a repeated bilayer at a specified incident wavelength. The obvious next step would seem to be the repetition
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of the calculation for a different but nearby angle, until the entire range of theta from 0 to pi/2 has been covered.
This is indeed done in our computer program.

A well-known experimental fact in x-ray theory and practice is the existence of * reflection lines'; that is,
strong reflection over one (or more) very small regions of wavelength, with (near-)zero reflection between them
( see ref.[1] ). For a sufficiently large number N of bilayers, our calculations verify this state of affairs. Naturally
one then wants to know the 'integrated reflectivity" of one line, and this quantity can be obtained by summing (or
'numerically integrating') over the wavelengths contained in one line.

We have of course incorporated this into our computer program, but want to warn that inherent
arbitrariness remains in the choice of the limits in the integration. The method we have adopted is to put the lower
limit of integration 1/3 of the way to the line to the left, and the upper limit 1/3 of the way to the line to the right.
This will be fine if each line is indeed "sharp' and if the reflection is very close to 0 in between; but exceptions
to this rule will be buried beyond recognition by this choice for limits of integration. Caution is advised.

4. Surface Rouehness.

Experimental observation of lines that are broader or weaker than predicted by theory have been plausibly
attributed to 'surface roughness'; see ref. [5]. Our theoretical model describes layers with two properties:
1) boundaries are perfect planes, and
2) bilayers are repeated with perfect periodicity.
Neither of these conditions is likely to be fully attained in the real world; it is plausible to attribute the deviations
of experimental data from theory to surface roughness.

Can we put surface roughness into our model while maintaining mathematically essential properties 1)
and 2)? What we have done is to replace the two layers consisting of pure material A and pure material B by eight
layers of the same total thickness; layer 2 is pure A, layer 6 is pure B, and layers 3,4,5 have intermediate index
of refraction, as do layers 7,8,9. The procedure is justified in greater detail in ref. [8].

5. Description of Comouter orogram.

A version of the FORTRAN computer program in use, called LA8WC.FOR, is presented in Appendix 7.
The line numbers on the far left appear for the reader's convenience only and are ignored by the computer; the set
of numbers appearing to the right of the line numbers are FORTRAN statement numbers. The program displayed
in Appendix 7 describes a repeated structure of 8 layers, numbered from 2 to 9; layer 2 consists of W (tungsten)
and layer 6 of C (carbon); the other layers have an intermediate composition, consisting of tungsten and carbon ions
in the ratios 3:1, 1:1, and 1:3. The program can be applied to other multilayer materials by changing a small
number of lines between lines 50 and 166.

For easier readability, we always attach a statement number n which ends in 0 to the first statement in each
"do loop', and statement number n+ I to the last statement in that loop, e.g. thus:
800 do 801 kk= 1, 9

801 continue.

The main part of the calculation are the nested lops which start at line number 245:
700 sums over the 'orders" of the reflection peaks

200 sums over the two polarizations (TE, TM)
300 sums over the angles of incidence around a peak
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400 sums over the layers in one cell
401

301
201

701
The main printout, which is the integrated reflectivity of one peak, is elicited by statement # 50 ( at line # 388).
However, the (non-integrated) reflectivity at each angle of incidence can also be printed out, by removing the c (-
*comment*) from statement 66 (at line number 382).

The 244 lines that precede this main calculation will not be described in much detail here, since they are
comparatively simple structurally, proceeding in a linear fashion without much nesting or interrelationships. Lines
1 through 33 are explanatory comments; 34 through 49 are FORTRAN declarations of variables. Basically what
is done in lines 50 through 166 is the insertion of the data specific to the chemical species involved; they culminate
in the calculation of the index of refraction (called ninx) in lines 173- 195, which is the quantity used in the four
main loops.

A possible point of confusion- viz. a change in numbering of the layers - is described in lines 205, 206.
The reason for this is historical, not logical: this program for the 8 layers per cell was constructed from an earlier
one for 4 layers per cell. The program could, of course, be rewritten to give each layer the correct number in the
first place.

We have in many cases provided two ways of inserting data, at the option of the operator: from the
keyboard, or by modifying a statement in the program. For example, in lines 95-100, densities are inserted by
statements in the program. To change to insertion from the keyboard, remove the *!" from line 97, and insert a
a!ain lines 98 and 99.

To run the program, the command, to be entered from the " prompt, is
@exnoop la8wc

This calls a short command file, EXNOOP.COM , which provides the usual FORTRAN, link, and run commands
without use of the optimizer. The reason for the exclusion of the optimizer is that it often gives wrong answers.
This is a problem of the computer we are using that will, we are told, be fixed in the future.

Aooendix 1. Mathematical details.

This appendix covers the same ground as sec. 2, but does so in detailed mathematical language, and in
notation similar to that used in the computer program (Appendix 7), with minimal verbal explanation.

The results depend on the polarization of the incoming beam. The formulas below refer to TE polarization.
TE [= "transverse electric"] means that the Electric field vector E is perpendicular ("Transverse') to the plane of
incidence, i.e. to the plane of the paper in figure I. TM is analogously defined for the Magnetic field H. At the
end of this appendix, we explain how the TM formulas can be easily obtained from the TE ones. To describe an
unpolarized beam, the TE and TM results should be averaged in the end.

The index i refers to the materials involved. Orginally, i=2 and 3 referred to the bilayer, which is
repeated N times; i= I and f are not repeated; they refer to the materials bounding the repeated bilayers. At the
end of this appendix, we explain how the formulas must be modified when the repeated structure consists of more
than 2 layers.

Input data are: angle of incidence 6, incident wavelength Xo,complex indices of refraction n1, layer
thickness h2, h3, number of bilayers N (called layno). Note that generally nj= (e1IL)S, where e and ju are the
dielectric constant and the magnetic permeability. We first compute h= h2 + h3 and and then the sin O1 = (n/nt)
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sin 01. This is Snell's law; note, however, that, as nj is generally complex, sin Oj is also, contravening the simple
interpretation of 0 as an *angle". Further:

A1 = (2a1/X) hA cos0i

a = cos0 2 cos# 3 - (P3'/2) sin sin3
b = cos#2 cos0 3 - (p21p3) sinW2 sinO3
c = -i[(llp3) cos0 2 s0i 3 + (l/p) sin 2 cos0 3]
d = -if p3 cosO2 sin? 3 + P2 sin#2 cos 3
A = b-a = [(p3/p2) - (p2/p3)] sin02 sinb03
T = [A 2 + 4cd]
f = "+T

= (h)[a+b+T]
\2 = (1h) [a + b -T]
D = 2ff
M1 = (4cdXN2 +/f ),2N)/D
M = (4cdXI 2N + f2 Xj )/D
M12  = 2cf (XN - X2N)yD
M21 2df (XN - X2N)/D
P -- (Mi + M12 P) P
Q = (M21 + M12) PI
r - (P-Q)/(P + Q) = reflection coefficient
R I r 1 2 = reflectivity

The reader of sec. 2 and appendix 2 will recognize the

famatrix as giving the values of E and H below a bilayer in terms of the values above it; the matrix arises

from mdltiply ng the characteristic matrices of layer 2 and layer 3. This tells us how to modify the calculations
when more than two - e.g. three - different layers are present: simply replace equ. (6) by
M = M4 M3 M2, and so on for any number of different layers.

The equations below a, b, c, d extract the reflectivity from the field quantities E and H above and below
the N multilayers, as qualitatively explained in sec. 2.

We noted that the above formulas apply to TE polarized radiation. To obtain equivalent results for TM,
only one change must be made: for all i, replace p, . (n1 ,,)cos(O,) by p, - (j/n)cos(O). See ref. [91.

ARnendix 2. Diagonalization of a 2 by 2 matrix.

The process of diagonalizing an n by n matrix is well known, in the sense that is described in many text
books ( e.g. refs [10], [11] ) and carried out in several published computer programs. Numerical methods must
generally be used, either from the beginning or, at any rate, before the end. However, the process becomes much
simpler for 2 x 2 matrices: the secular equation is then quadratic, and the eigenvalues are thus explicitly obtainable
in terms of radicals, as are all other quantities. Hence, everything can be done analytically. Not having found the
simple 2 x 2 case described explicitly in the literature, we summarize the results here. We do not derive them,
since the reader can easily verify that the S given below does indeed diagonalize M according to equ. (8).

The matrix of interest is given by equ. (6),



Its inverse is

M-  K I (ab-cd)-da

The eigenvalues defined by equ. (8) are

X, - (a+b+T)12 and
X, - (a+b-7)/2, where
T- 42 + 4cd]" and
A - b-a.

The transformation (8) is accomplished by the matrix

and its inverse is s- 1 _ J I(2fT)

where

f "'A +T.

ARmendix 3. Analytical Rronerties of eieenvalues. and relation to reflectivity Reaks.

We begin by writing down the matrix describing one single layer of index n according to equ. (3) of
section 2:

M - ( cos -(ip)sin,) (A3-)-(ip)sin-f ces-f

with

-' - (2i'h/X) coseo
p - (nlu) Cos.

We note that this is a "unimodular" matrix (which means that its determinant = 1). The matrix describing any
number of layers, possibly different ones, is therefore also unimodular, being a product of matrices of the above
form; and this is also true for any similarity transform H M H ' of any such product matrix, since the determinant
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of H and H' are each other's reciprocal; in particular it is true for the diagonal matrix whose elements are the
eigenvalues X, and X2. That is, the product of the two eigenvalues obeys

X. )2 - 1. (A3-2)

This relation has a different meaning depending on whether the eigenvalues are real, pure imaginary, or complex.

Real eigenvalues. If one X is real, then (A3-2) implies that the other is also, and is the first one's
reciprocal; and one X is greater than 1, the other smaller. E.g., if X = 8, then X2 = 0.125.

Pure imaginary eigenvalues. Here (A3-2) implies that if one is pure imaginary, the second one is also.
If we write X, = iu,, X2 = iu2 (where the u s are real), then (A3-2) implies that X2 = -i/u. E.g. ifX, = 10 i, then

- -i/10.

Complex eigenvalues. These can be written X, = r,*exp(ia), X2 = r2*exp(ib) (where a, b, and the r's are

real). To satisfy (A3-2), we must have b= -a, so we have

X,- r * exp(ia), X2 - r2 * exp(-ia). (A3-3)

Now recall that the trace of a matrix, like the determinant, is invariant under a similarity transformation. We can
therefore equate the trace after the transformation to the trace before,

XI+ '\ 2 - Tr(M)

or, using (A3-3) for the left and (A3-1) for the right,

r exp(ia) + r2 exp(-ia) - 2 cosy. (A3-4)

If -y is real, then cos -y is also, and it follows that rl and r2 are equal, since otherwise laml + lam2 would not be
real. So in that case we have

X - r exp(ia) and X2 - r exp(-ia), (A3-5)

i.e. they are each others conjugates.

What is the physical meaning of a real trace? From (A3-1) we see that Tr(M) is real iff-n= (e ;Lo-s is real,
i.e. if there is no absorption in that layer. The matrix M in that case is of the form

real imag

imag real I

Now multiply that matrix by another of the same structure (Physically: follow that layer with another non-absorbing
one). Then the product matrix has the same form also. (This is perhaps not obvious, but easily seen by carrying
out the multiplication). That form will, by the same reasoning, persist through any number of multiplications
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(physically: through any number of non-absorbing layers). We conclude that the simple relation (A3-5) holds for
a multilayer consisting wholly of non-absorbing layers, while in presence of absorption only the more general
relation (A3-3) applies.

Now what is the purpose of all this? We want to find the behavior of the multilayer calculation as a
function of N, the number of double layers. N appears in the present calculation only in the form X 1N and X 2 N.

The limit of large N is particularly important, as is stability : for physical reasons, a constant value should be
approached when N gets large.

Neither complex eigenvalues, nor pure imaginary ones, provide that convergence: XN has the form
exp(iaN), which changes substantially with every unit increase of N; V2N behaves in the sarre way. The same is
true for pure imaginary eigenvalues. On the other hand, for real eigenvalues, the greater of the two will, when
raised to the power N, be much larger than the smaller raised to the same power. The expression for the
reflectivity derived in App. I contains the eigenvalues in both the numerator and the denominator, and the
reflectivity r then becomes independent of both eigenvalues, hence also independent of N; this is perhaps best seen
from eqs. (A4-3). In absence of absorption, that limiting value is 1, the largest possible value. (This requires a
short calculation.) In the special case that neither eigenvalue is larger than the other, viz. that they are equal, r
vanishes.

We conclude that the large r's will arise for values of the angle of incidence 01 for which the X's are real.
To find these regions of 0, we wrote a preliminary program called EIGV.FOR, which prints the eigenvalues as a
function of thetal. This we followed by the final program LAYER.FOR. Together, they verify the above
reasoning: large values of r appear only where the eigenvalues are real.

We would also expect that increasing N would increase the reflectivity, and would sharpen the width of
the line (i.e. decrease the range of thetal for which reflection is substantial). In absence of absorption, the
reflectivity approaches 1 as N approaches infinity; if absorption is present, a finite value for the absorption is
approached for N large enough to absorb essentially all the incoming radiation, and no further change in the
reflectivity should result from increasing N further. We have verified these features by appropriate model
calculations.

Apnendix 4. Two expressions for the reflectivity suitable for Computation.

As the reader can check, the expression for r arrived at in appendix 1 can be written as

r - 4-0 103- + 02 -2 4, (A4-1)

where

4 -2d +p J
-2 - f-2pc (A4-2)
- 2cp 1  f

, - fP, ± 2d

However, in most situations of interest, one of the two terms in the numerator of (A4-1) will be much larger than

the other; and the same for the denominator. This follows from two facts derived in appendix 3: high values of
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r arise only when the X's are real; and the two >'s are each other's reciprocal. It follows that one X will be larger
than I and the other smaller; for the moment, let us call them Xj and X.. If N is a large number (as often it is),
X.N will be much larger then V, proving the verbal statement following equ. (A4-2). It is therefore a good idea
to divide both the numerator and the denominator by N. We obtain

r 03-- +XN(p 2 4 1) 4  (A4-3a)
03 ' \- (0'2/04'I4-

suitable when 1X,1 > 1X2 1 and

r 414, + X2  ) ( 0'1 /2)i' 3- (4-3b)

04_ + X2V (01/4 2)0 3o

suitable when X ,2  > I X, I. Note that both (A4-3a) and (A4-3b) are exact in all cases; but in most cases only
one of them will allow the computer to proceed without complaining about "overflow" and "underflow".

ADnendix 5. Index of refraction n and atomic scatterin2 factor f.

Our calculation requires the index of refraction for each of the atomic species involved and at the incident
wavelength of interest. We use the relationship given by James, ref [12]:

n - 1-6 - 1 - (NX2 e2/2w mc2 (O) (A5-1)

Here N is the number of atoms per unit volume, X the incident wavelength, e and m the charge and mass of the
electron, and c the speed of light; f is the atomic scattering factor, and the argument (0) denotes grazing incidence.

f can be obtained in two ways. The preferred way uses the tables of Henke et al., ref. [13], where two
quantities, f, and f2, are tabulated for 94 atomic species and many wavelengths. They are the real and imaginary
parts of f(O). That is,

where flo) -fl + if 2

and f, -Z+f

A-t
Z is the atomic number, and f + if" is commonly called the "anomalous scattering factor".

For wavelengths not covered by Henke, the scattering factors are taken from Cromer [141, who gives f'
and f in his equs (8) and (9). However, a numerical integration is required to evaluate equ (7) (in contrast to
Henke's data, which only need to be looked up).

As a practical matter, a user-friendly computer program due to D.B. Brown, called XTALR.COM exists,
ref. [3], which in its preliminary stages finds f in just the manner described above - i.e. by using Henke's numbers
when available, and computing them according to Cromer when not. Considerable time may be saved by utilizing
that program. 11



Finally, a word about the index of refraction of a layer containing several different atomic species. Since
each atom contributes additively, relation (A5-1) can be used with two modifications: substitute E f,(0) for f(0),
where the index i sums over all the atoms in a "cell'; and reinterpret N as the number of "cells' per unit volume.

Auendix 6. Sion change for VI.

Our analysis ( Sec.2 ) is based on BW, ref. [4], but we also use formulas from J , ref. [12], and data from
H, ref. [13]. We must therefore make sure that the notation in these three papers is consistent; or to make
appropriate changes where it is not.

We have found one inconsistency: BW and H write
Re[ exp(+inkx)]

for a plane wave, while J writes
Re[ exp(-inkx) ].

Since I is the one who is out of step, the easiest way to make our calculation consistent is to modify J's formulas
whenever they are used: we must replace his Im(n) by -Im(n). A detailed validation of this procedure is given in
ref. [15].

A22endix 7. Printout of comuuter program.

We present here a printout of a computer program called LA8WC.FOR. The many comments should help
its readability; however, the summary in sec. 5 of this report should prove more coherent.

1 c Program LA8WC.FOR
2 c H. B. Rosenstock, 1990-1991
3
4
5
6
7
8
9 c program with eight layers- W, C, and 6 mixed ones
10 c cgs units unless otherwise stated.
11 c General notation according to Born and Wolf.
12 c mu, eps, ninx =mag. permeability,diel. constant,index of refr.
13 c theta(i) are angles of beam with the normal (not with the plane!) in material i.
14 c thel(1000) are 1000 values of theta(1) above
15 c h(2), h(3) are thickness of materials 2 and 3,
16 c wavelengthO, kO= wavelength, wave-number
17 c ha, wavelengthangO, kangO = same in Angstroms
18 c subno= # of components(single layers) in one multilayer
19 c (not counting vacuum at both ends)
20 c layno= N-- # of multilayers; Ndens= # of atoms/vol; Navo=Avogadro's no.;
21 c Zat,Aat= at. charge,mass; Zat is not used in the calculation
22 c proper, but may be needed to call the Henke tables.
23 c ii= sqrt(-1)
24 c 300-301 theta-loop
25 c 400-401 materials loop (inside theta-loop)
26 c 350-310 - see BW sec. 6.1, HBR notes, also,p(4), beta(4)

12



27 c 500-loop provides printout for 300 loop, printing maxima and
28 c minima of reflectivity only.
29
30
31
32
33 implicit real(a-z)
34 complex ii, c, d, discri, f, laml, lam2
35 complex refl
36 complex ninx, sinthe, costhe, beta, p, theta, decre
37 complex cb2, cb3, sb2, sb3, p2,p3, a, b, delta
38 complex psil, psi2, psi3pl, psi3mi, psi4pl, psi4mi
39 complex termpl, termmi, top, bot, fstar, fsum, tran, prod
40 parameter(max=26)
41 dimension mu(max), ninx(max), Asum(max), fsum(max)
42 dimension h(max), ha(max)
43 dimension theta(max), sinthe(max), costhe(max), rho(max)
44 dimension Aat(max, 10), Zat(max, 10)
45 dimension multy(max,10), Ndens(max), p(max), beta(max)
46 dimension fl(max,10), f2(max.10), fstar(max,10), thlpeak(0: 10)
47 dimension thldiff(O: 10)
48 dimension tran(2:max, 2,2), prod(2:max, 2,2)
49
50 ii= (0,1)
51 pi= 3.1415926
52 Navo= 6.02e23 !Avogadro
53 eel= 4.803e-10 !el. charge
54 mel= 9.109e-28 !el. mass
55 clight= 3.00el0 !speed
56
57 0 type 1
58 1 format (' write a label')
59 accept*
60 c layno= 1
61 3 print 4
62 4 format (' type the number of distinct layers; and
63 2 of multilayers ')

64 ! accept*, subno, layno
65 subnof= 8
66 layno= 600
67 10 print 11, subno, layno
68 11 format (' number layers in one multilayer;
69 2 and of multilayers N =', 2f6.0)
70 type 2
71 dim= 26 !not to exceed stated dimensionality of ninx,mu, etc

72 120 do 121 i= 1, dim ! initial settings; change them later
73 ninx(i)= I ! i sums over the 9 layers (1,9= vacuum)
74 mu(i) 1
75 ha(i) =0
76 130 do 131 kk= 1, 9 ! kk sums over atoms in layer i

77 fl(i,kk)= 0
78 f2(i,kk)= 0 13



79 Aat(i,kk)= 0
80 Zat(ikk) = 0
81 multy(i,kk)= 0
82 131 continue
83 121 continue
84 5 type 6
85 6 format( ' type atomic numbers Zat(2,1), (4,1),(4,2); then
86 2 same for atomic masses Aat ')
87 : accept*, Zat(2), Zat(4), Aat(2), Aat(4)
88 Zat(2,1) = 74
89 Zat(4,1)= 6
90 ! Zat(4,2)= 7
91 Aat(2,1)= 183.9
92 Aat(4,1)= 12.01
93 Aat(4,2)= 14.01
94 type*, Zat(2,1),Zat(4, l),Zat(4,2),Aat(2, I),Aat(4,l),Aat(4,2)
95 7 type 8
96 format( ' type densities rho(2) and rho(4) in grams/cc')
97 accept*, rho(2), rho(4)
98 rho(2)= 19.3
99 rho(4)= 2.00
100 type*, rho(2), rho(4)
101 print 2
102
103 type 2
104 37 type 38
105 38 format (' for layer 2, type fl, and f2 ')
106 ! accept*, fl(2,1), f2(2,1)
107 fl(2,1)= 43.25
108 f2(2,1)= 11.54
109 type*, fl(2,1), f2(2,1)
110 47 type 48
111 48 format (' for layer 3, type the fis, and the f2s')
112 ! accept*, fl(4,1) f2(4,1), fl(4,2), f2(4,2)
113 fl(4,1)= 6.24
114 f2(4,1)= .305
115 fl(4,2)= 0.0 !7.12
116 f2(4,2)= 0.0 !1.96
117 type*, fl(4,1), f2(4,1), fl(4,2), f2(4,2)
118
119 type 2
120 multy(2,1)= 1
121 multy(4,1)= 1
122 multy(4,2)= 0
123 27 type 28, multy(2, 1), multy(4,1), multy(4,2)
124 28 format(' multiplicities', 35.0)
125 type 2
126 2 format (' ")
127
128 21 type 22
129 22 format(' type incident wavelength in Angstroms')
130 ! accept*, wavelengthang0

14



131 wavelengthangO= 8.34
132 kangO= 2*pi/wavelengthango
133 wavelengthO= wavelengthango* le-8
134 kO= kangO* 1e8
135 30 type 31 , wavelengthang0, kangO
136 31 format (' wavelengthangO, kango =' 2f6.2, ' Angstroms, ^-')
137 print 2
138 ! ha(3)= 0.00
139 ! ha(5) = ha(3)
140 ! ha(2)= 7.672 - ha(3)
141 ! ha(4)f= 19.728 - ha(3)
142 ! ha(6)f= ha(2)
143 ! ha(7)= ha(3)
144 ! ha(8)= ha(4)
145 ! ha(9)f= ha(5)
146
147 ha345f= 3. ! total thickness of layers 3 + 4 + 5
148 ha(2)= 7.672 - ha345
149 ha(6)= 19.728 - ha345
150 ha(3)= ha345/ 3.
151 ha(4)= ha345/ 3.
152 ha(5)= ha345/ 3.
153 ha(7)= ha345/ 3.
154 ha(8)= ha345/ 3.
155 ha(9)= ha345/ 3.
156 160 type 161, ha345
157 161 format (' total thickness of three mixed layers is',f5.2)
158
159 hsum= 0
160 110 do III i=1,dim
161 !type*, i, ha(i)

162 h(i)= ha(i)* le-8
163 hsum= hsum+ h(i)
164! type*, hsum
165 111 continue
166 hh= hsum
167 150 type 151
168 151 format (' pause, then enter')
169 accept*
170
171 40 print 41
172 41 format (' i mu n ha')
173 100 do 101 i= 2, subno+1
174 ! compute index of refr. acc. to R.W.James, equ.(2.61)
175 etanum= wavelengthO**2* eel**2* Navo
176 etaden= 2* pi* mel* clight**2
177 eta= etanum/ etaden
178 Asum(i)= 0
179 fsum(i)= 0
180 decre= 0
181 800 do 801 kk= 1,9
182 fstar(i,kk)= fl(ikk)- ii* f2(i,kk)

15



183 ! see HBR 11Ju189.rep for source of minus-sign above
184 fsum(i)= fsum(i)+ multy(i,kk)* fstar(i,kk)
185 Asum(i)= Asum(i) + multy(i,kk)* Aat(i,kk)
186 801 continue
187 ! next three lines for "vacant' layer (all Aat zero)
188 805 if (Asum(i) .gt.. 1) goto 806
189 ! set ninx(3) and (5) equal to I
190 decre= 0
191 goto 807
192 806 decre= eta* rho(i)* fsum(i)/ Asum(i)
193 807 ninx(i)= 1- decre
194
195 101 continue
196 type 2
197 ! change ninx(3) and (5) equal to average of the thick ones
198 ninx(3)= (ninx(2)+ninx(4) )/ 2
199 ! ninx(5)= (ninx(2)+ninx(4) )/ 2
200 ninx(6)= ninx(2)
201 ! ninx(7)= ninx(3)
202 ! ninx(8)= ninx(4)
203 ! ninx(9)= ninx(5)
204
205 ! above, ninx(2) describes W, and ninx(4) describes C
206 ! below, ninx(2) describes W, and ninx(6) describes C
207
208 ninx(6)= ninx(4) ! the C layer
209 ninx(3)= .75* ninx(2)+ .25* ninx(6)
210 ninx(4)= .50* ninx(2)+ .50* ninx(6)
211 ninx(5)= .25* ninx(2)+ .75* ninx(6)
212 ninx(7)= ninx(5)
213 ninx(8)= ninx(4)
214 ninx(9)= ninx(3)
215
216 1100 do llOl i=2, subno+1
217 ! print the new values for all i
218 type 103, i, mu(i), ninx(i), ha(i)
219 103 format( f4.0, flO.6, ' ',2f10.6, f12.6)
220 1101 continue
221 print 2
222
223
224 c locate reflection peaks from Bragg's law; and the distance
225 c between adjacent ones
226 thlpeak(0)= pi/2
227 omaxf= 8 ! number of "orders' we consider
228 600 do 601 m6 1, omax
229 right = m6* wavelengthO/ (2* hh)
230 type*, m6, hh, right
231 if (right .gt. 1) goto 602
232 thlpeak(m6)= acos(right)
233 thldiff(m6)= -thlpeak(m6)+ thlpeak(m6-1)
234 620 type 621, int(m6+.01), thlpeak(m6)
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19

235 621 format(' peak', i4, ' at', fS.4, 'radians')
236 601 continue
237 602 continue
238 m6max= m6-1
239 thldiff(m6max+ 1)= thlpeak(m6max)
240 type 2
241
242 c the main nested loops follow now. 700 loop sums over the
243 c reflection peaks (the *orders'); 200 loop sums over pol's
244 c (TE or TM ); 300 loop over incident angles around the peak.
245 700 do 701 m7= 1, m6max
246 type 2
247 710 type 711
248 711 format (' pause, then enter')
249 accept*
250 720 type 721, int(m7+.01), thlpeak(m7)
251 721 format(' peak', i2, ' at', f8.4, ' radians' )
252 c The *integrated reflectivity" is found by summing the
253 c reflectivity from thmin to thmax, each of which are located 1/3
254 c of the way to the next peak
255 thcent= thlpeak(m7)
256 thmin- thcent- thldiff(m7+ 1)/3
257 thmax= thcent+ thldiff(m7 )/3
258 thstep= .001
259 44 type 45, thmin, thcent, thmax, thstep
260 45 format (' min, center, max, step of theta =', 4f8.4)
261 print 2
262
263 200 do 201 pol= 1, 2
264 205 if (pol .It. 1.5) goto 206
265 type 207
266 207 format (' TM polarization')
267 goto 208
268 206 continue
269 type 209
270 209 format (' TE polarization')
271 208 continue
272 42 type 43
273 43 format (' thetal abs{refl} [col2]*'2')
274 j= -
275 sum=0
276 300 do 301 thetal = thmin, thmax, thstep
277 j=j+1
278 theta(l)= thetal
279 400 do 401 i =1, dim
280 sinthe(i)= (ninx(1)/ninx(i) )* sin(theta(l))
281 if (Real(sinthe(i)) .gt. I ) goto 9000
282 compute costhe from sinthe;
283 costhe(i)= ( 1- sinthe(i)**2) **(.5)
284 p(i)= costhe(i)* ninx(i)/ mu(i)
285 ! TE or TM polarization
286 220 if (pol .It. 1.5) goto 221
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287 p(i)= costhe(i)* mu(i)/ ninx(i)
288 221 continue
289 beta(i)= costhe(i)* ninx(i)* h(i)* kO
290 401 continue
291 pl= p(l)
292 plast = p(subno + 2)
293 !plast is the p for the last layer
294 cb2 = cos(beta(2))
295 cb3 = cos(beta(3))
296 sb2 = sin(beta(2))
297 sb3 = sin(beta(3))
298 ! insert the new calculation of laml and lam2 here
299 jjmax = subno + 1
300 84 do 85 jj= 2, jjmax
301 ! define the transfer matrix for layer jj
302 tran(jj, 1,1)= cos(beta(jj))
303 tran(jj, 2,2)= cos(beta(jj))
304 tran(j, 1,2)= -ii* sin(beta(jj))/ p(jj)
305 tran(jj, 2.1)= -ii* sin(beta(j))* p(jj)
306 184 !print 185, jj
307 185 !format(' tran[', f3.0, 'j' )
308 284 !type 285, tran(jj,1,1), tran(jj,1,2)
309 !type 285, tran(jj,2,1), tran(jj,2,2)
310 285 !format (2e12.2, ' ' ,2e12.2)
311 !type 2
312 85 continue
313 ! type 2

314 ! the product matrix for the 1st layer (layer 2)
315 prod(2, 1,1)= tran(2, 1,1)
316 prod(2, 1,2)= tran(2, 1,2)
317 prod(2, 2,1)= tran(2, 2,1)
318 prod(2, 2,2)= tran(2, 2,2)
319 87 do 88j j= 3, jjmax
320 ! the product matrices for the other layers
321 prod(ij,1,1)= prod(jj-1,1,1)* tran(j,l,1) +
322 2 prod(ij-1,1,2)* tran(jj,2,1)
323 prod(jj,l,2)= prod(jj-1,1,1)* tran(jj,1,2) +
324 2 prod(ij- 1,1,2)* tran(jj,2,2)
325 prod(jj,2,1)= prod(jj-1,2,1)* tran(jj,1,1) +
326 2 prod(jj-1,2,2)* tranWj,2,1)
327 prod(Wj,2,2)= prod(Wj-1,2,1)* tran(j,1,2) +
328 2 prod(jj-1,2,2)* tran(ij,2,2)
329 !384 print 385, jj
330 !385 format(' prod[', f3.0, '] )
331 !484 type 485, prod(jj,1,l), prod(jj,1,2)
332 ! type 285, prod(jj,2,1), prod(jj,2,2)
333 !485 format (2e12.2, ' ' ,2e12.2)
334 ! type 2
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335 88 continue
336 !stop
337 a= prod(jjmax, 1,1)
338 b= prod(jjmax, 2,2)
339 c= prod(jjmax, 1,2)
340 d= prodjmax, 2,1)
341
342 delta= b-a
343 discri= ( delta**2 + 4*c*d )**.5
344 f= delta+ discri
345 laml = (a+b+discri)/ 2
346 lam2= (a+b-discri)/ 2
347 abslaml = abs(laml)
348 abslam2 = abs(lam2)
349 ! type*, laml, lam2, laml*lam2
350 1 type 2
351 c now follow two evaluations of refl.
352 c 490 determines which is used; the other,
353 c though also exact, might lead to overflow.
354 psil= 2*d+ plast*f
355 psi2 = f- 2*plast*c
356 psi3pl= 2*c*pl + f
357 psi3mi= 2*c*pl- f
358 psi4pl= f*pl + 2*d
359 psi4mi= f*pl- 2*d
360
361 490 if ( abslaml .It. abslam2) goto 491
362 termpl = psi2* psi4pl/ psi 1
363 termmi = psi2* psi4mi/ psil
364 top= psi3mi + termpl*lam2**(2*layno)
365 bot= psi3pl + termmi*lam2**(2*layno)
366 refl= top/ bot
367 goto 351
368 491 continue
369 termpl = psi 1* psi3pl/ psi2
370 ternni = psi I* psi3mi/ psi2
371 top= psi4pl + termmi*laml**(2*layno)
372 bot= psi4mi+ termpl*laml**(2*layno)
373 refl= top/ bot
374
375 351 continue
376 c no longer needed avreflo)= abs(refl)
377 rr= abs(refl)**2
378 ! print only values above"floor"
379 floor= .0
380 70 if (abs(refl) .It. floor) goto 71
381 c if (mod(j,10.) .gt. 0) goto 71
382 c preceding line cuts down on the printout
383 c66 print 67, thetal, abs(refl), rr
384 67 format (2f8.4, 9.5)
385 71 continue
386 sum= sum+ rr 19



387 301 continue
388 rrinteg= thstep* sum
389 50 type51, rrinteg
390 51 format(' integrated reflectivity= ', e12.3)
391 302 goto 303
392 9000 type 9001, thetal
393 9001 format ('no penetration for thetal greater than'J,8.4)
394 303 type 2
395 201 continue
396 701 continue
397 !90 type 91,floor
398 91 format (' floor= f3.*2)
399
400 9999 end
401
402
403
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Figure 1. Beam entering a single layer
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Figure 2. Beam entering a double layer.
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Figure 3. Beam entering N double layers
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